TOTALIZED PULSE INPUT MODULE, 8 points (DeviceNet)

R7D-PA8 MODEL

BEFORE USE

Thank you for choosing M-System. Before use, please check contents of the package you received as outlined below. If you have any problems or questions with the product, please contact M-System's Sales Office or representatives.

■ PACKAGE INCLUDES:

Totalized pulse input module(1)

■ MODEL NO.

Confirm Model No. marking on the product to be exactly what you ordered.

■INSTRUCTION MANUAL

This manual describes necessary points of caution when you use this product, including installation, connection and basic maintenance procedures.

■ EDS FILE

EDS files are downloadable at M-System's web site: http:// www.m-system.co.jp

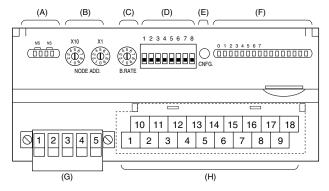
POINTS OF CAUTION

■ CONFORMITY WITH EU DIRECTIVES

- The equipment must be mounted inside the instrument panel of a metal enclosure.
- The actual installation environments such as panel configurations, connected devices, connected wires, may affect the protection level of this unit when it is integrated in a panel system. The user may have to review the CE requirements in regard to the whole system and employ additional protective measures to ensure the CE conform-

■ GENERAL PRECAUTIONS

- Before you remove the unit or mount it, turn off the power supply and input signal for safety.
- DO NOT set the switches on the module while the power is supplied. The switches are used only for maintenance without the power.


■ ENVIRONMENT

- Indoor use.
- When heavy dust or metal particles are present in the air, install the unit inside proper housing with sufficient ventilation.
- Do not install the unit where it is subjected to continuous vibration. Do not subject the unit to physical impact.
- Environmental temperature must be within -10 to +55°C (14 to 131°F) with relative humidity within 30 to 90% RH in order to ensure adequate life span and operation.

■ WIRING

- Do not install cables close to noise sources (relay drive cable, high frequency line, etc.).
- Do not bind these cables together with those in which noises are present. Do not install them in the same duct.

COMPONENT IDENTIFICATION

- (A) Status Indicator LED
 (B) Node Address Setting Rotary SW
- (C) Baud Rate Setting Rotary SW
- (D) Operating Mode Setting DIP SW (SW1)
- (E) PC Configurator Jack
- (F) Input Status Indicator LED
- (G) DeviceNet, Power Supply Terminals
- (H) Input Terminals

■ STATUS INDICATOR LED

ID	STATE	FUNCTION	
	Green	Operating in a normal condition	
	Blinking Green	Standby (needs commissioning)	
MS	Red	Critical failure	
	Blinking Red	Minor failure	
	OFF	No power supplied	
	Green	Link on-line and connections in the	
		established state	
NO	Blinking Green	Link on-line but no connections in	
NS		the established state	
	Red	Critical link failure	
	Blinking Red	Minor link failure	
	OFF	No power supplied	

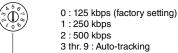
■ PULSE INPUT STATUS INDICATOR LED

LED indicators showing input signal status.

ON: LED ON OFF: LED OFF

■ NODE ADDRESS

Node Address is selected between 1 and 63 in decimal. The left switch determines the tenth place digit, while the right switch does the ones place digit of the address.



■ BAUD RATE

Baud Rate is selected with the rotary switch.

2:500 kbps

Baud Rate Setting

The R7D communicates in the baud rate setting detected at the startup with the switch set to the positions 0 (125 kbps), 1 (250 kbps) or 2 (500 kbps).

For the settings 3 through 9, it analyzes the PLC's network to determine the baud rate on the network.

■ OPERATING MODE

• Extension (SW1-1, 1-2)

SW1-1	SW1-2	EXTENSION	
OFF	OFF	No extension (*)	
ON	OFF	Discrete input, 8 or 16 points	
OFF	ON	Discrete output, 8 or 16 points	

(*) Factory setting

Note: Be sure to set unused SW1-3 through 1-8 to OFF.

■ DeviceNet TERMINAL ASSIGNMENT

NO.	ID	FUNCTION, NOTES
1	V+	Network power supply +
2	CAN_H	Network data High
3	Drain	Shield
4	CAN_L	Network data Low
5	V-	Network power supply –

■ INPUT TERMINAL ASSIGNMENT

	10 V	+	11 P	10	12 P	l1	13 P	12	14 P	13	15 P	14	16 P	15	17 P	16	18 P	17
1	v—	2 C	0	3 C	:1	4 C	2	5 C	:3	6 C	4	7 C	5	_® С	6	9	7	

NO.	ID	FUNCTION	NO.	ID	FUNCTION
1	V–	Power (–)	10	V+	Power (+)
2	C0	Common	11	PI0	Input 0
3	C1	Common	12	PI1	Input 1
4	C2	Common	13	PI2	Input 2
5	C3	Common	14	PI3	Input 3
6	C4	Common	15	PI4	Input 4
7	C5	Common	16	PI5	Input 5
8	C6	Common	17	PI6	Input 6
9	C7	Common	18	PI7	Input 7

■ EXTENSION MODULE

Combinations with all extension modules are selectable.

PC CONFIGURATOR

With configurator software, settings shown below are available. Refer to the software manual of R7CON for detailed operation.

■ INTERFACE MODULE SETTING

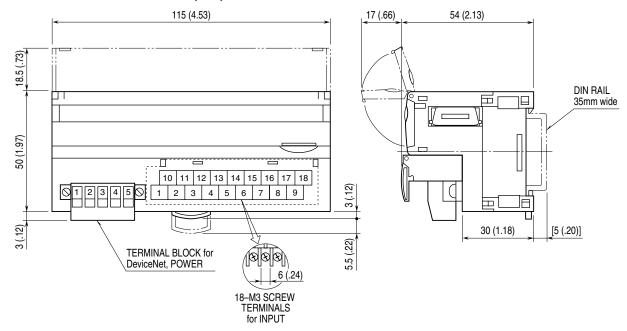
PARAMETER	AVAILABLE RANGE	DEFAULT SETTING
Communication Timeout	0.0 - 3276.7 (sec.)	1.0 (sec.)
Status Data	ON: Disable	OFF: Enable
	OFF: Enable	
Serial ID	English one-byte characters within 8 characters	

■ CHANNEL INDIVIDUAL SETTING

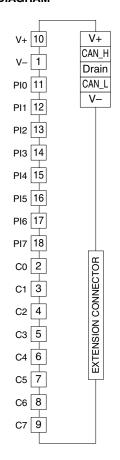
PARAMETER	AVAILABLE RANGE	DEFAULT SETTING
Max	1 000 – 4 294 967 295	9 999 999
Carry	0, 1	0
Preset	0 – 4 294 967 295	

■ EXTENSION MODULE SETTING

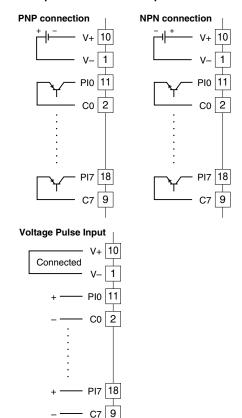
PARAMETER	AVAILABLE RANGE	DEFAULT SETTING	
Output Hold/Clear	Output Hold	Output Hold	
	Output Clear		



EM-7802-AJ Rev.1 P. 2 / 6


TERMINAL CONNECTIONS

Connect the unit as in the diagram below.


■ EXTERNAL DIMENSIONS unit: mm (inch)

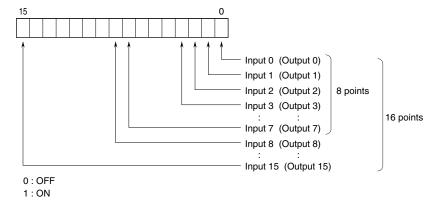
■ CONNECTION DIAGRAM

■ Input Connection Examples

DATA ACQUISITION & SETTING

The table below shows data allocation of R7D-PA8. Parameter preset and other settings are available with command setting of R7D-PA8. Set the commands according to the procedure explained next.

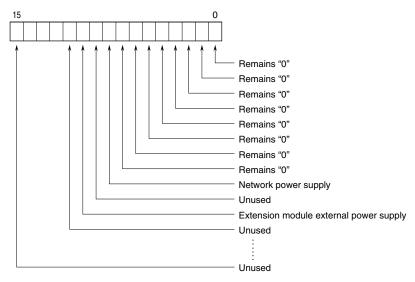
Parameter of each channel is two-word integer not signed. Make sure that data is written or read in a two-word unit. When overflowing, the value to which response can be set is "0" or "1". The maximum range available is 1000 to 4294967295. (Factory setting: 9999999)


Parameters may be preset to a value between the overflow response value and the maximum value.

	OUTPUT DATA	0
Begin +0	Data to write (upper)	CH0
+1	Data to write (lower)	CH0
+2	Data to write (upper)	CH1
+3	Data to write (lower)	CH1
+4	Data to write (upper)	CH2
+5	Data to write (lower)	CH2
+6	Data to write (upper)	CH3
+7	Data to write (lower)	CH3
+8	Data to write (upper)	CH4
+9	Data to write (lower)	CH4
+10	Data to write (upper)	CH5
+11	Data to write (lower)	CH5
+12	Data to write (upper)	CH6
+13	Data to write (lower)	CH6
+14	Data to write (upper)	CH7
+15	Data to write (lower)	CH7
+16	Command setting	
	 Command address 	
	CH0: Bit 0, 1	
	CH1: Bit 2, 3	
	CH2: Bit 4, 5	
	CH3: Bit 6, 7 CH4: Bit 8, 9	
	CH5: Bit 10, 11	
	CH6: Bit 12, 13	
	CH7: Bit 14, 15	
	Command	
	00: Read data	
	01: Preset	
	10: Overflow response value	
	11: Maximum value	
+17	Extension discrete output data	
+18	_	

-	15 INPUT DATA	0
Begin + 0	Data to read (upper)	CH0
+1	Data to read (lower)	CH0
+2	Data to read (upper)	CH1
+3	Data to read (lower)	CH1
+4	Data to read (upper)	CH2
+5	Data to read (lower)	CH2
+6	Data to read (upper)	CH3
+7	Data to read (lower)	CH3
+8	Data to read (upper)	CH4
+9	Data to read (lower)	CH4
+10	Data to read (upper)	CH5
+11	Data to read (lower)	CH5
+12	Data to read (upper)	CH6
+13	Data to read (lower)	CH6
+14	Data to read (upper)	CH7
+15	Data to read (lower)	CH7
+16	Command setting	
	 Command address 	
	CH0: Bit 0, 1	
	CH1: Bit 2, 3	
	CH2: Bit 4, 5	
	CH3: Bit 6, 7	
	CH4: Bit 8, 9	
	CH5: Bit 10, 11	
	CH6: Bit 12, 13	
	CH7: Bit 14, 15	
	Command	
	00: Read data	
	01: Preset	
	10: Overflow response value	
	11: Maximum value	
+17	Extension discrete input data	
+18	Status	
•		

I/O DATA DESCRIPTIONS


■ DISCRETE I/O

■ STATUS

Bit 0 to 7: Totalized pulse input module shows '0' at the same address.

Bit 8 to 10: Shows the power supply status.

Power supply

0 : Normal 1 : Error

TRANSMISSION DATA DESCRIPTIONS

■ BASIC MODULE

Transmitted data (word) depends upon the modules types.

MODEL	OUTPUT DATA*1	INPUT DATA*2		
WODEL	(R7D to Master)	(Master to R7D)		
R7D-PA8	17	17		

■ EXTENSION MODULE

Transmitted data (word) for the extension module is added.

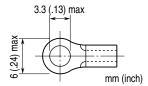
MODEL	OUTPUT DATA*1	INPUT DATA*2		
WIODEL	(R7D to Master)	(Master to R7D)		
R7D-EAx	1	0		
R7D-ECx	0	1		

■ STATUS

Status signal can be included in the transmission data when the setting is enabled using the PC Configurator software (model: R7CON). For details, refer to "STATUS in I/O DATA DESCRIPTIONS".

STATUS	OUTPUT DATA*1	INPUT DATA*2
	(R7D to Master)	(Master to R7D)
Enabled	1	0
Disabled	0	0

^{*1.} Output Data means those sent to the master.


WIRING INSTRUCTIONS

■ SCREW TERMINAL (Input)

Torque: 0.5 N·m

• SOLDERLESS TERMINAL

Refer to the drawing below for recommended ring tongue terminal size. Spade tongue type is also applicable. Applicable wire size: 0.25 to 1.65 mm² (AWG 22 to 16) Recommended manufacturer: Japan Solderless Terminal MFG. Co., Ltd, Nichifu Co., Ltd

■ EURO TYPE CONNECTOR TERMINAL (DeviceNet)

Applicable wire size: 0.2 - 2.5 mm²

Stripped length: 7 mm

^{*2.} Input Data means those received from the master.